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Executive Summary

Digital Twin (DT) initiatives across the process industries continue to grow in ambition and 
investment, yet their success rates remain uneven. Many projects deliver elegant models that 
fail to perform when confronted with the messy reality of plant operation. The reason is rarely 
the technology itself—it lies in a deeper mismatch between how real industrial systems behave 
and how they are specified, modeled, and expected to behave.

Most projects assume that the physical process is deterministic and therefore fully knowable: 
that with sufficient data, physics, and computation, a model can replicate reality under all 
conditions. In practice, however, once the model meets the operating plant, unmodeled 
interactions, nonlinear responses, and human interventions appear. These effects are systemic 
rather than accidental—they emerge from how the system is structured and controlled, not 
from any single fault.

This paper explores how system complexity, not complication, undermines Digital Twin 
realism and project Return on Investment (ROI). It introduces a practical framework for 
assessing and managing that complexity through requirements engineering, ensuring that 
expectations and model scope remain aligned with system behavior.

Because the word complexity carries different meanings in refining and management circles, it 
is important to clarify what it means here.

In this paper, complexity refers to system behavior and interactions, not to the Nelson 
Complexity Index or the Cynefin framework:

 The Nelson Complexity Index (NCI) measures processing configuration and upgrading 
capability—how many conversion steps a refinery has and what range of products it can 
make. It describes process configuration, not system behavior.

 The Cynefin framework classifies decision environments in organizations. It is a 
management sense-making tool, not a physical-system descriptor.

 System complexity, as used here, means the degree of interdependence, feedback, and 
adaptation within a process or control system—how strongly its parts interact to 
produce nonlinear or emergent behavior.

For example, a Crude Distillation Unit (CDU) may rank higher than an Fluid Catalytic Cracking 
Unit (FCCU) on Nelson’s index, yet behave far more predictably. In contrast, the FCCU—though 
“simpler” in Nelson terms—exhibits nonlinear feedback, self-reinforcing dynamics, and 
emergent instability. This behavioral complexity, not configurational complexity, is what 
challenges Digital Twin fidelity.

Through examples from refinery operations, particularly CDU vs. FCCU, this paper illustrates 
why seemingly identical units behave differently and why Digital Twins often diverge from 
reality when confronted with such behavior. It proposes a structured approach based on 
complexity assessment and requirements engineering to identify these challenges early and 
set realistic modeling objectives.
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Key messages:

 Complex systems cannot be understood through component analysis alone; their 
behavior emerges from interactions.

 Most Digital Twin project failures originate from unrealistic or underspecified 
requirements, not from modeling tools.

 A structured complexity assessment and requirements-engineering process can 
prevent those failures.

 Matching the right modeling strategy to the system’s complexity leads to realistic 
expectations, lower cost, and higher ROI.

The concepts and approach presented in this paper draw from complexity science—the 
interdisciplinary study of nonlinear, adaptive systems—and translate those principles into a 
practical framework for engineering decision-making. This provides a scientific basis for 
understanding why process systems often behave in ways that defy deterministic prediction, 
and how such behavior can be managed rather than eliminated.

This paper and its companion study, “From Pilot to Plant: When Scale Breaks Your Digital Twin,” 
form part of a broader research program on complexity-aware Digital Twin design. A 
forthcoming e-book, Beyond the Hype: System Complexity Science — The Overlooked Constraint in 
Digital Twin Design, will further expand on the theoretical foundations and practical frameworks 
introduced here.

1. Introduction – The Digital Twin Expectation Gap

The idea of a Digital Twin—a virtual replica that behaves exactly like the real system—promises 
near-limitless value: predictive maintenance, optimization, autonomous control, and 
continuous improvement. In marketing material, the model and the process are shown as two 
identical loops seamlessly exchanging data. In reality, that equality rarely exists beyond 
carefully calibrated test cases.

The gap between expectation and realization stems from a fundamental assumption: that the 
physical process is deterministic, and that with enough sensors, data, and equations, the model 
can be made to replicate it fully. In practice, once the model meets the real plant, unmodeled 
interactions appear. Operators override controls, the environment changes, and the system 
exhibits behaviors that are internally generated, not externally forced.

This mismatch becomes evident in pilot implementations that appear successful but fail to 
generalize, or in brownfield deployments where legacy systems, control philosophies, and 
human actions interact unpredictably. The result is frustration—“the model doesn’t match 
reality”—and costly re-work to redefine the scope.

2. A Useful Analogy – The Phantom Traffic Jam

A familiar example helps frame the issue.
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You are driving on a highway when traffic suddenly slows to a standstill. After a few minutes, it 
begins to move again—no accident, no obstruction. The jam was self-generated: small, random 
fluctuations in driver speed amplified through feedback between vehicles.

This phenomenon—studied extensively in control theory—is a form of emergent behavior: 
order arising from local interactions without central coordination. Each driver reacts rationally 
to nearby conditions, yet collectively the system produces an outcome (a traffic jam) that no 
one intended.

Industrial systems often behave in the same way. Each control loop, unit, or operator acts 
locally and correctly, but the aggregate outcome may oscillate, destabilize, or shift to an 
entirely new operating state. Recognizing such emergent behavior as normal, not exceptional, 
is the first step toward realistic modeling. (For a visual demonstration of how scale alone 
creates emergent complexity—using identical process rules at pilot vs. plant scale—see the 
companion paper 'From Pilot to Plant: When Scale Breaks Your Digital Twin.’)

The analogy also highlights the limits of reductionism. A model based solely on individual 
vehicle dynamics cannot reproduce a phantom jam unless it captures the interactions between 
vehicles. Similarly, a Digital Twin that perfectly represents equipment physics but omits 
interaction dynamics will diverge from reality the moment those interactions dominate.

3. Case Study – Identical Design, Different Behavior

Refinery operators often assume that two units built to identical specifications will behave 
identically. Experience shows otherwise.

Consider first two Crude Distillation Units (CDUs). Both are steady, predictable systems whose 
performance depends mainly on physical configuration and heat-integration efficiency. Their 
first-principles models—based on thermodynamics and material balances—track reality 
closely, and any small deviations can usually be corrected with parameter tuning or 
calibration.

From a systems-thinking perspective, these units are complicated: they contain many 
components, yet their interactions remain largely linear and predictable. Operating behavior is 
well understood, and changes in one variable seldom trigger unexpected responses elsewhere.

Now compare a pair of Fluid Catalytic Cracking Units (FCCUs) at the same site. They share 
design, control logic, and feedstock, yet their operating behavior diverges dramatically. One 
remains stable during feed transitions; the other periodically destabilizes with no clear 
external trigger. Catalyst-activity decay, regenerator-temperature drift, and intermittent 
emissions variability appear without consistent cause.

Traditional engineering analysis looks for single explanations—instrument drift, controller 
tuning, or data error. Even after such issues are corrected, differences persist. The explanation 
lies not in hardware or human error but in system interactions.

Here the unit’s behavior becomes complex in the systems-behavior sense introduced earlier: 
multiple feedback loops interact, amplifying or damping one another, and small timing or gain 
differences can tip the entire system into new equilibrium states or oscillations.
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FCCUs are governed by multiple coupled feedback loops: the heat balance between reactor and 
regenerator, the coke-formation and combustion cycle, fractionator cut-point adjustments, 
and emissions control. Each loop can reinforce or counteract others depending on local 
conditions. Small timing or gain differences in one loop alter the overall feedback structure, 
producing new equilibrium states or oscillations. The unit’s behavior is therefore an emergent 
property of interactions, not of its components.

This is the essence of system-behavioral complexity introduced earlier. A CDU’s stability arises 
from largely one-way causal chains; an FCCU’s dynamics emerge from circular causality. The 
CDU’s predictability reflects its structural complication, whereas the FCCU’s variability reflects 
its interactional complexity.

In practical terms, even if two FCCUs share identical blueprints, they occupy different points in 
the multidimensional interaction space defined by feed composition, catalyst condition, 
control response, and operator adaptation. They are, in effect, different organisms sharing the 
same DNA—a reminder that configurational similarity (the domain of the Nelson Index) does 
not imply behavioral equivalence.

Such differences illustrate why Digital Twins calibrated under one set of conditions often fail 
when deployed on another, and why early complexity assessment—identifying where 
interactions dominate—should precede model development rather than follow it.

4. Behavior Emerges from Interactions

The contrasting behavior of the two FCCUs can be explained only by looking beyond individual 
components and examining how their feedback loops interact.

In a reductionist approach, each component is analyzed in isolation and the whole is assumed 
to be the sum of its parts. That logic works for complicated systems such as CDUs, where 
relationships are stable and largely one-way.

In complex systems, however, the interactions themselves drive behavior, and those 
interactions change with context.

Within the FCCU, several loops operate simultaneously.

Three dominant examples illustrate how reinforcing and balancing mechanisms compete to 
define stability:

 Reinforcing loop (R1 – Coke / Heat / Severity):
Feed heaviness ↑ → coke on catalyst ↑ → regenerator temperature ↑ → heat to riser ↑ 
→ conversion ↑ → coke ↑.
This loop amplifies deviations; small changes in feed composition or catalyst activity 
can cascade into runaway severity.

 Reinforcing loop (R2 – Cut Points & Recycle):
Tighter fractionator cuts → LCO recycle ↑ → effective feed heaviness / Conradson 
carbon residue (CCR) ↑ → coke formation ↑ → regenerator temperature ↑ → riser 
severity ↑ → conversion ↑.
This secondary loop reinforces R1 by increasing effective feed severity through internal 
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recycles. Adjusting cut points for short-term yield optimization can therefore 
strengthen internal feedback and accelerate instability.

 Balancing loop (B1 – CO / Temperature Control):
CO in flue gas ↑ → air-flow controller ↑ → regenerator temperature ↑ → CO 
conversion ↓.
This loop stabilizes operation—until interaction delays or tuning mismatches shift the 
balance.

When operating conditions change, the relative strength of these loops changes as well.

A control action that dampens one disturbance may reinforce another.

The dominant feedback path can therefore migrate, causing the unit to behave differently 
under seemingly identical conditions.

These patterns are characteristic of what complexity science describes as emergent behavior—
system-level outcomes produced by local interactions rather than by any central control. 
Originating from systems theory and the study of nonlinear, adaptive processes (Prigogine, 
Holland, Bar-Yam, Mitchell), this perspective provides the conceptual foundation for 
understanding why identical units can exhibit divergent dynamics and why Digital Twin 
models must represent interactions as much as components.

Figure 1: Generic FCCU Diagram with feedback loop interactions



Aprocesr Ltd. | ADS 2025 White Paper | aprocesr.com/ADS2025

7 / 19

This context-dependence is the hallmark of complexity. The system’s behavior is not merely 
complicated—it is adaptive. Local interactions between process dynamics, control logic, and 
human interventions continually reshape the feedback network itself.

These insights echo a body of research on complex system behavior across many high-risk 
domains. One of the most influential contributions is Richard I. Cook’s essay “How Complex 
Systems Fail” (2000), written originally for medicine but profoundly applicable to industrial 
operations. Cook observed that failures in complex systems do not arise from single causes but 
from combinations of normal interactions that align in unanticipated ways. His observations 
illustrate why conventional root-cause logic breaks down when multiple small factors 
compound into emergent failure modes.

Selected Principles from Cook (2000) Implications for Digital Twins

Complex systems are intrinsically 
hazardous systems.

Failure cannot be eliminated by design or 
modeling—it is inherent to the system.

Complex systems are heavily defended 
against failure.

Automation and control layers hide latent 
interactions until multiple defenses align.

Catastrophe requires multiple small 
failures aligning in time and space.

Predictive models trained on normal data rarely 
see combinations leading to collapse.

Complex systems run as broken 
systems.

Twins validated on “steady-state” data may miss 
chronic instability.

Human operators are adaptive problem-
solvers.

Their interventions form part of the feedback 
structure, not external noise.

All successful safety work is invisible. Model success is hard to measure precisely 
because stability hides risk.

Change introduces new failure modes.
Updating or re-scoping Twins without 
understanding interactions can re-introduce 
latent risk.

Table 1: Adapted from Richard I. Cook, “How Complex Systems Fail,” 2000.

Cook’s principles remind us that complex systems cannot be controlled in a deterministic 
sense; they can only be managed.

The practical value of a Digital Twin in such an environment is not to dominate complexity but 
to make it visible and navigable—a tool for understanding system dynamics, supporting operator 
awareness, and enabling adaptive management rather than rigid prediction.

In such environments, cause-and-effect relationships exist, but they are non-stationary: they 
evolve over time. That is why a model calibrated to yesterday’s data may lose predictive power 
tomorrow. Complexity does not invalidate modeling; it simply means that behavior is 
relational, not compositional. Understanding those relations—rather than perfecting 
component fidelity—is what makes a Digital Twin useful.
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5. Complicated vs. Complex Systems

The distinction between complicated and complex systems is critical—not in the sense of the 
Nelson index, but in the sense of system behavior.

Attribute Complicated System (e.g., CDU) Complex System (e.g., FCCU)

Dominant logic Deterministic Nonlinear / feedback-driven

Behavior Predictable, repeatable Emergent, context-dependent

Modeling 
approach

First-principles equations Hybrid (physics + data + 
heuristics)

Control tuning Parameter optimization Continuous adaptation

Failure mode Single cause Multi-factor combination

Validation Steady-state comparison Behavior envelope tracking

The difference lies not in system size but in interaction density and feedback diversity.

A small system can be complex (e.g., biological fermenter), and a large one can be merely 
complicated (e.g., pipeline network).

Recognizing where a process lies on this spectrum is essential before defining what a “Digital 
Twin” should achieve. Many project failures originate from treating complex systems as 
complicated ones—expecting deterministic control where only probabilistic or adaptive 
behavior is possible.

This distinction echoes Richard Cook’s insight in “How Complex Systems Fail” (2000): failures are 
rarely traceable to a single cause but arise from multiple small factors interacting in ways that 
only become obvious in hindsight. The implication for DT projects is clear—predictive accuracy 
is not guaranteed by completeness of data alone.

The next section examines how this hidden complexity shapes Digital Twin project outcomes.

6. The Hidden Impact of Complexity in Digital Twin 
Projects

Complexity exerts its influence long before a Digital Twin reaches deployment.

When the interactions that define system behavior are poorly understood, the project may 
appear on track — until late-stage integration exposes inconsistencies that trace back not to 
coding or calibration errors, but to missing recognition of system complexity.

Most Digital Twin shortfalls stem not from modeling tools, but from the assumptions built into 
their requirements.

a) Ambiguous Requirements

Many DT charters use language such as “develop a real-time Digital Twin for optimization.”
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The goal sounds concrete but hides an unspoken premise: that the process is deterministic and 
predictable.

If, instead, the process exhibits strong feedback, adaptation, or emergent modes, 
“optimization” may have no single solution.

Without an explicit complexity assessment, requirements stay vague, validation criteria 
become subjective, and project success can only be declared — never demonstrated.

Example: Two FCCUs built to identical design produced diverging yield 
patterns.

The project requirement called for “5 % yield improvement through Digital 
Twin optimization.”

In one unit the model performed flawlessly; in the other it diverged within 
weeks.

The problem wasn’t the model—it was that the two systems belonged to 
different complexity regimes.

b) Overconfidence in Data and Models

Machine-learning and hybrid approaches are often promoted as universal solutions.

They are powerful, but they cannot extract information that is absent from the data.

Rare events — defluidization, feed transitions, or catalyst behavior under stress — leave few 
examples in historical datasets.

As a result, models trained on past behavior hallucinate stability when confronted with 
unobserved dynamics.

The failure occurs not at runtime, but at design time, when model scope is defined without 
testing for system complexity.

c) Human and Organizational Interactions

Humans are an inseparable part of industrial systems.

Operators, planners, and maintenance teams constantly adjust boundaries and priorities, 
effectively changing the system configuration in real time. A Digital Twin that excludes these 
interventions is modeling a different system.

Each manual adjustment—an override, a production schedule change, a maintenance deferral
—adds a feedback path that no control diagram shows.

Complexity increases silently, until the model’s assumptions no longer match the plant’s 
reality.

d) Why Complexity Remains Hidden

Traditional project scoping frameworks — phase-gate reviews, deterministic milestones, linear 
budgets — are designed for complicated systems with stable cause-effect relationships.
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They work well when uncertainty is reducible by more detail.

In complex systems, uncertainty is structural, not informational: it persists no matter how 
much data are collected.

The linear project model therefore misrepresents effort, cost, and risk.

By the time instability surfaces, budgets and expectations are fixed, and re-scoping appears as 
failure rather than learning.

e) Visible Symptoms

Typical warning signs that complexity has been ignored include:

 Model performance deteriorates under disturbance even though calibration is correct.

 Operators distrust or disable model recommendations.

 Root-cause analysis cycles endlessly between “bad data” and “bad model.”

 Incremental fixes accumulate, yet systemic mismatch persists.

These are not anomalies—they are symptoms of an unacknowledged complexity gap.

f) Turning the Gap into Insight

Recognizing complexity early does not add bureaucracy; it replaces rework with foresight.

A short complexity-profiling exercise at concept stage can reveal which aspects of a unit are 
predictable and which are interaction-driven.

That insight informs model architecture, validation design, and user expectations before 
development begins.

The cost is measured in weeks; the savings, in months of re-engineering.

7. Why Traditional Project Scoping Fails

Traditional project frameworks evolved to manage complicated systems, where uncertainty 
decreases with more detail. In complex systems, this assumption breaks down.

Most industrial projects are managed through frameworks designed for deterministic 
outcomes. They define inputs, outputs, milestones, and deliverables. Such methods are 
effective for complicated systems but fragile for complex ones.

Three systemic gaps dominate:

1. Deductive Bias

Traditional engineering starts with known principles and deduces outcomes.

Complex systems often require the inverse: inductive reasoning from observed behavior.
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Project teams trained in deduction assume that more detail equals more control, adding 
variables and constraints without recognizing that model completeness does not imply 
predictive validity.

2. Linear Planning

Gantt charts and waterfall milestones assume sequential progress—each step based on a stable 
foundation. But in complex environments, discoveries at later stages invalidate earlier 
assumptions. By the time instability surfaces, budgets and expectations are locked. Corrective 
iteration appears as failure, not learning.

3. Undefined Success Criteria

When system behavior is uncertain, defining “model accuracy” becomes ambiguous. Is success 
defined by matching outputs within 1% of reality, or by correctly predicting qualitative trends?

Without clear criteria, the project drifts toward over-engineering or premature declaration of 
victory.

These shortcomings reflect an organizational blind spot: complexity is treated as noise rather 
than a property of the system.

Consequently, budgets inflate, schedules slip, and results underwhelm.

Yet, these failures are avoidable—not by abandoning Digital Twins, but by re-engineering how 
projects are scoped.

Recognizing these limitations leads naturally to the need for a structured approach to diagnose 
and quantify system complexity before scoping begins.

To manage this, projects need a structured way to expose and quantify complexity before scope 
and validation targets are frozen. The next section introduces such an approach.

8. Introducing the Complexity Assessment Framework

Complexity cannot be reduced—it must be characterized.

Understanding where and how a system’s complexity manifests is the foundation for setting 
realistic expectations.

The aprocesr Complexity Assessment Framework provides a structured, repeatable, and 
collaborative method for identifying the interaction patterns that determine Digital Twin 
feasibility.

The framework is not an audit or a scorecard; it is a conversation structured by evidence.

It translates the abstract notion of “complexity” into measurable dimensions that link directly 
to modeling strategy and resource allocation.

Each dimension falls into one of three categories—Structural/Physical, Dynamic/Operational, 
or Informational/Organizational—as described earlier.
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The Ten Assessment Dimensions

Structural / Physical — Physical & Control Interconnection
How physical coupling and control interactions shape predictability.

1. Structural Interdependence — Density of material/energy/information links across 
subsystems. 

2. Feedback Loop Density — Number and strength of interacting control loops and 
dynamic couplings. 

3. Nonlinearity / State-Dependent Behavior — Gain shifts, thresholds, or regions where 
small input changes produce large effects. 

Dynamic / Operational — Behavior Over Time
How dynamics evolve, adapt, or produce surprises during operation.

4. Temporal Variability — Variation across operating time scales; stability vs. regime 
shifts. 

5. Human Decision Influence — Extent to which manual interventions change feedback 
structure. 

6. System Boundary Change / Integration — Moving boundaries, integration with external 
systems, live reconfiguration. 

7. Emergent Behavior Potential — Risk of outcomes arising from interactions (e.g., self-
generated oscillations). 

Informational / Organizational — Information & People
How data quality and cross-functional coupling influence behavior.

8. Data / Information Quality & Completeness — Ambiguity, missing signals, latency, or 
low signal-to-noise. 

9. Rate of Change / Evolution — Frequency of changes: feed, equipment, control logic, or 
constraints. 

10.Organizational Complexity / Cross-Functional Coupling — Hand-offs, conflicting 
objectives, and coordination overhead across teams. 

Comparing CDU and FCC profiles illustrates the framework's diagnostic power:

A Crude Distillation Unit typically scores:

 Low on dimensions 2, 3, 5, 7 (minimal feedback interaction, linear response, stable 
operation) 

 Moderate on dimensions 1, 4, 6 (some coupling, predictable variation) 
 Variable on dimensions 8, 9, 10 (depends on site-specific factors) 
 Result: Complicated system — high-fidelity first-principles modeling feasible 

A Fluid Catalytic Cracking Unit typically scores:

 High on dimensions 1, 2, 3, 7 (strong coupling, multiple reinforcing loops, nonlinear 
behavior, emergent oscillations) 

 Moderate to High on dimensions 4, 5, 6 (regime shifts, operator intervention 
dependency) 

 Variable on dimensions 8, 9, 10 
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 Result: Complex system — hybrid physics-data modeling required, behavioral 
validation essential

During a guided workshop, participants rate each dimension (Low / Moderate / High) based on 
observed behavior and system evidence.

The result is a complexity profile, often shown as a radar chart, that highlights where project 
risk and analytical effort should concentrate.

 A profile dominated by high structural scores implies strong physical coupling and the 
need for hybrid or reduced-order physics modeling.

 High dynamic scores indicate sensitivity to control interactions and require co-
simulation or real-time validation strategies.

 High informational or organizational scores suggest that human and data factors will limit 
adoption more than physics will.

The objective is not to label a unit as “prohibitively complex,” but to set a realistic boundary for 
what fidelity is achievable—and where investment will return the greatest value.

Figure 2: Typical CDU complexity profile
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9. From Profile to Requirements

Assessment alone has little value unless it informs action.

The next step is to translate complexity insights into system requirements—the formal bridge 
between plant reality and model design.

The process described here is based on Specifications Engineering—an applied adaptation of 
INCOSE’s Requirements Engineering principles for industrial environments.

Whereas formal Requirements Engineering defines a full life-cycle discipline, Specifications 
Engineering focuses on producing clear, testable, and implementation-ready deliverables that 
translate system needs into actionable model and project specifications.

This translation follows three conceptual layers:

1. Profile → System Understanding

Identify which complexity categories dominate.

Example: FCCUs show high dynamic and organizational complexity; CDUs show mainly 
structural.

2. System Understanding → Specification Depth

Determine the level of effort required for data fidelity, control coupling, and validation 
scope.

Figure 3: Typical FCCU complexity profile
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Example: High dynamic complexity demands closed-loop testing rather than static 
validation.

3. Specification Depth → Project Scope and Resources

Define modeling approach, computational needs, data governance, and stakeholder 
engagement.

In the broader aprocesr methodology, these three conceptual layers align with a four-step 
Specifications Engineering workflow: Understand → Conceptualize → Prepare → Specify.

The first two steps correspond to system understanding, the third ensures organizational and 
data readiness, and the final step formalizes specifications and validation criteria.

This approach brings the rigor of Requirements Engineering to a level of practicality suited for 
industrial Digital Twin projects—retaining the logic of systems engineering while discarding 
the bureaucracy that often makes it inaccessible outside aerospace or defense.

This is, in essence, a requirements-engineering process adapted from systems-engineering 
principles (INCOSE 2023) but scaled for industrial practicality.

Rather than hundreds of low-value requirements, the focus is on a concise set of high-impact 
functional and validation specifications that directly address identified complexity drivers.

Typical outputs include:

 A functional hierarchy describing what the Digital Twin must represent

 An interface map showing what it must connect to

 A validation matrix defining how success will be measured

Complexity thus becomes a design constraint, not a post-hoc discovery.

10. Selecting the Right Modeling Strategy

Different systems warrant different modeling philosophies.

Choosing the wrong one at the start nearly guarantees cost overruns or failure.

System Type Recommended 
Approach

Key Risks if Misapplied

Complicated / 
Predictable

First-principles 
deterministic models.

Excessive detail may waste effort, 
but results are reliable.

Complex / 
Adaptive

Hybrid models combining 
physics with data-driven 
learning.

Purely physics-based models miss 
emergent behavior; purely data-
driven models hallucinate outside 
training range.

Data-Rich but 
Physically 
Opaque

Machine-learning 
surrogate constrained by 
physics.

Loss of interpretability; spurious 
correlation.

Sparse-Data 
Legacy Systems

Reduced-order physics 
models calibrated with 
expert heuristics.

Unvalidated extrapolation; narrow 
envelope of reliability.
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For systems dominated by uncertainty and continual adaptation, Bayesian or other 
probabilistic frameworks can complement these approaches by updating model confidence as 
new evidence becomes available.

Their value lies not in replacing physics or data models, but in managing uncertainty—a 
defining property of complex systems where prediction must remain probabilistic rather than 
absolute.

The framework acts as a decision gate before committing resources.

It answers the practical question:

What level of fidelity is realistically achievable, and what will it cost to 
sustain?

11. ROI and Implementation Implications

a) Prevention vs Discovery

Early assessment costs weeks; late discovery costs months.

Experience shows that investing 1–2 % of project effort in complexity assessment and scoping 
can avoid 20–30 % re-engineering later.

b) The Value of Realism

In complex systems, realism—not precision—drives ROI.

A model that reproduces the direction and qualitative response of system behavior often provides 
more value than one that matches numeric outputs under narrow conditions.

Complexity-aware specifications focus on behavioral envelopes rather than single-point 
accuracy.

c) Sustainability and Lifecycle

Every Digital Twin is a living entity that evolves with the plant.

Complexity assessment informs lifecycle planning—showing which elements require 
continuous calibration and which can remain static.

Clear expectations about this balance reduce sustainment cost and ensure long-term 
credibility of the model.
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12. Key Takeaways

1. Complex ≠ Complicated – Units like FCCUs display emergent behavior that cannot be 
decomposed into simple cause-effect chains.

2. Assess Before You Commit – Early diagnostic profiling prevents major mis-scoping 
later.

3. Specifications Engineering as Bridge – Translating complexity insights into explicit, 
testable requirements aligns expectations and resources.

4. Match Modeling Strategy to Reality – Choose physics-, data-, or hybrid-based 
approaches according to dominant complexity drivers.

5. Realism Delivers ROI – Digital Twins that mirror behavior, not just structure, sustain 
their value over time.

6. Complex Systems Can’t Be Controlled — They Can Be Managed – The role of a Digital 
Twin in a complex environment is not to impose control but to enhance understanding, 
visibility, and adaptability. Its success is measured not by perfect prediction but by how 
effectively it helps people manage what cannot be predicted.

Complexity is not an obstacle to be eliminated; it is a property to be 
recognized and managed.

13. About aprocesr

aprocesr Ltd. is an independent engineering consultancy specializing in process systems 
analysis, automation strategy, and Digital Twin feasibility.

Founded and directed by Sam Matic, P.Eng., aprocesr bridges the gap between process reality 
and modeling ambition through requirements engineering, complexity assessment, and 
hybrid-modeling advisory services.

The firm collaborates globally with industrial clients and academic partners to translate 
complexity science into practical project success.

Core Services

 Complexity diagnostics and Digital Twin feasibility studies

 Requirements engineering for automation and modeling projects

 Hybrid model architecture and validation strategy consulting

 Training and workshops on complexity-aware systems thinking for engineers

 smatic@aprocesr.com   📧 🌐 aprocesr.com/ADS2025

https://aprocesr.com/ADS2025
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A. Keywords
Keywords: Digital Twin, system complexity, complexity science, complicated vs. 
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engineering, refinery systems, Fluid Catalytic Cracking (FCC), Crude 
Distillation Unit (CDU), process systems engineering, complexity assessment, 
hybrid modeling, INCOSE, systems thinking.

B. Glossary

Term Definition (context of this paper)

Complex System A system whose behavior arises from interacting components, 
producing outcomes not predictable from individual parts.

Complicated 
System

A system with many parts but predictable cause–effect 
relationships.

Complexity 
Assessment

Structured evaluation of interdependencies, feedback loops, 
and variability that affect system behavior.

Specifications 
Engineering

Applied adaptation of INCOSE’s Requirements Engineering 
focused on generating clear, testable, and implementation-
ready specifications.

Requirements 
Engineering (RE)

Formal discipline for eliciting, analyzing, and managing 
system requirements throughout a project lifecycle.

Emergent Behavior Behavior that arises from local interactions without central 
control, often unexpected and nonlinear.

Hybrid Modeling Modeling approach that combines first-principles physics with 
data-driven machine learning elements.

Digital Twin (DT) A dynamic digital representation of a physical process or 
system, used for analysis, prediction, and decision support.

Feedback Loop
A causal pathway where system outputs influence its inputs, 
producing stabilizing (balancing) or amplifying (reinforcing) 
effects.

Nelson Complexity 
Index (NCI)

An economic measure of refinery configuration and upgrading 
capability—not related to system-behavior complexity.

Cynefin Framework
A management model categorizing decision contexts as 
simple, complicated, complex, or chaotic—distinct from 
engineering complexity.
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